10 research outputs found

    Big data analytics in high-throughput phenotyping

    Get PDF
    Doctor of PhilosophyDepartment of Computer ScienceMitchell L. NeilsenAs the global population rises, advancements in plant diversity and crop yield is necessary for resource stability and nutritional security. In the next thirty years, the global population will pass 9 billion. Genetic advancements have become inexpensive and widely available to address this issue; however, phenotypic acquisition development has stagnated. Plant breeding programs have begun to support efforts in data mining, computer vision, and graphics to alleviate the gap from genetic advancements. This dissertation creates a bridge between computer vision research and phenotyping by designing and analyzing various deep neural networks for concrete applications while presenting new and novel approaches. The significant contributions are research advancements to the current state-of-the-art in mobile high-throughput phenotyping (HTP), which promotes more efficient plant science workflow tasks. Novel tools and utilities created for automatic code generation, maintenance, and source translation are featured. Promoted tools replace boiler-plate segments and redundant tasks. Finally, this research investigates various state-of-the-art deep neural network architectures to derive methods for object identification and enumeration. Seed kernel counting is a crucial task in the plant research workflow. This dissertation explains techniques and tools for generating data to scale training. New dataset creation methodologies are debuted and aim to replace the classical approach to labeling data. Although HTP is a general topic, this research focuses on various grains and plant-seed phenotypes. Applying deep neural networks to seed kernels for classification and object detection is a relatively new topic. This research uses a novel open-source dataset that supports future architectures for detecting kernels. State-of-the-art pre-trained regional convolutional neural networks (RCNN) perform poorly on seeds. The proposed counting architectures outperform the models above by focusing on learning a labeled integer count rather than anchor points for localization. Concurrently, pre-trained models on the seed dataset, a composition of geometrically primitive-like objects, boasts improvements to evaluation metrics in comparison to the Common Object in Context (COCO) dataset. A widely accepted problem in image processing is the segmentation of foreground objects from the background. This dissertation shows that state-of-the-art regional convolutional neural networks (RCNN) perform poorly in cases where foreground objects are similar to the background. Instead, transfer learning leverages salient features and boosts performance on noisy background datasets. The accumulation of new ideas and evidence of growth for mobile computer vision surmise a bright future for data-acquisition in various fields of HTP. The results obtained provide horizons and a solid foundation for future research to stabilize and continue the growth of phenotypic acquisition and crop yield

    Filling the silence: Giving voice to gender violence in Una’s graphic novel Becoming Unbecoming

    No full text
    Written in the style of a memoir, Una’s graphic novel, Becoming Unbecoming (2015), takes readers on a poignant journey of a young girl’s experiences of silence, shame and blame after being subjected to male sexual violence. The protagonist’s story is played out against the backdrop of the rapes and murders committed by the notorious Yorkshire Ripper. This paper examines the text’s multilayered narrative, which uses a range of graphic strategies and artistic styles to challenge its readers to make meaning, fill in the gaps, and piece together their own version of events. The text’s fragmented and disconnected sequences mimic the nature of traumatic memory, and the shifting linguistic-visual narration moves between fact, story, experience and emotion

    Breedbase: a digital ecosystem for modern plant breeding

    Get PDF
    Modern breeding methods integrate next-generation sequencing (NGS) and phenomics to identify plants with the best characteristics and greatest genetic merit for use as parents in subsequent breeding cycles to ultimately create improved cultivars able to sustain high adoption rates by farmers. This data-driven approach hinges on strong foundations in data management, quality control, and analytics. Of crucial importance is a central database able to 1) track breeding materials, 2) store experimental evaluations, 3) record phenotypic measurements using consistent ontologies, 4) store genotypic information, and 5) implement algorithms for analysis, prediction and selection decisions. Because of the complexity of the breeding process, breeding databases also tend to be complex, difficult, and expensive to implement and maintain. Here, we present a breeding database system, Breedbase (https://breedbase.org/). Originally initiated as Cassavabase (https://cassavabase.org/) with the NextGen Cassava project (https://www.nextgencassava.org/), and later developed into a crop-agnostic system, it is presently used by dozens of different crops and projects. The system is web-based and is available as open source software. It is available on GitHub (https://github.com/solgenomics/) and packaged in a Docker image for deployment (https://dockerhub.com/breedbase/). The Breedbase system enables breeding programs to better manage and leverage their data for decision making within a fully integrated digital ecosystem

    [The effect of low-dose hydrocortisone on requirement of norepinephrine and lactate clearance in patients with refractory septic shock].

    No full text

    Letter of Intent by the Solenoidal Detector Collaboration to construct and operate a detector at the Superconducting Super Collider

    No full text
    corecore